- Thu 31 May 2018
- swift
- mani3
- #swift tensorflow
Swift for TensorFlow を使って、 AND
, OR
, NAND
, XOR
を実装してみる。
ゼロから作るDeep Learning の第2章のサンプルコードを Swift for TensorFlow で書いてみただけです。
AND
func AND(a: [[Double]]) -> [Double] {
let shape = TensorShape([Int32(a.count), Int32(a[0].count)])
let x = Tensor(shape: shape, scalars: a.reduce([], +))
let w = Tensor(shape: shape, repeating: 0.5)
let b = -0.7
let y = (x * w).sum(squeezingAxes: 1) + b
return (y > 0).scalars.map { $0 ? 1.0 : 0.0 }
}
print(AND(a: [[0, 0], [0, 1], [1, 0], [1, 1]])) /// => [0.0, 0.0, 0.0, 1.0]
OR
func OR(a: [[Double]]) -> [Double] {
let shape = TensorShape([Int32(a.count), Int32(a[0].count)])
let x = Tensor(shape: shape, scalars: a.reduce([], +))
let w = Tensor(shape: shape, repeating: 0.5)
let b = -0.2
let y = (x * w).sum(squeezingAxes: 1) + b
return (y > 0).scalars.map { $0 ? 1.0 : 0.0 }
}
print(OR(a: [[0, 0], [0, 1], [1, 0], [1, 1]])) /// => [0.0, 1.0, 1.0, 1.0]
NAND
func NAND(a: [[Double]]) -> [Double] {
let shape = TensorShape([Int32(a.count), Int32(a[0].count)])
let x = Tensor(shape: shape, scalars: a.reduce([], +))
let w = Tensor(shape: shape, repeating: -0.5)
let b = 0.7
let y = (x * w).sum(squeezingAxes: 1) + b
return (y > 0).scalars.map { $0 ? 1.0 : 0.0 }
}
print(NAND(a: [[0, 0], [0, 1], [1, 0], [1, 1]])) /// => [1.0, 1.0, 1.0, 0.0]
XOR
func XOR(a: [[Double]]) -> [Double] {
let s1 = NAND(a: a)
let s2 = OR(a: a)
return AND(a: zip(s1, s2).map { [$0, $1] })
}
print(XOR(a: [[0, 0], [0, 1], [1, 0], [1, 1]])) /// => [0.0, 1.0, 1.0, 0.0]
とりあえず出力結果があってたので大丈夫そう。 何か間違ってたらごめんなさい🙇